
White Paper
Software-based Microarchitectural Timing

Side-Channels Attacks on TrustZone-M MCUs

Cristiano Rodrigues, Daniel Oliveira, Sandro Pinto
id9492@uminho.pt, {daniel.oliveira, sandro.pinto}@dei.uminho.pt

Centro ALGORITMI, Universidade do Minho

Abstract. This white paper reports a novel software-based timing side-channel attack that leverages
a key microarchitectural structure pervasive in all microcontrollers (MCUs), i.e., the bus interconnect. By
mounting this attack, we made it possible to bypass hardware-enforced isolation mechanisms available on
modern MCUs, i.e., Trustzone-M world isolation. Leveraging a non-privileged malicious application in the
non-secure world, we can leak information from a trusted application (TA) and steal secrets from the se-
cure world. We provide a proof-of-concept demonstration of our attack emulating a secure smart lock IoT
application: the smart lock TA interfaces with a trusted keypad, and the TA runs on top of a reference TEE
kernel, Trusted Firmware-M (TF-M). We demonstrate this attack on a real hardware platform powered by
an Armv8-M MCU (TrustZone-M), i.e., the NUCLEO-L552ZE-Q , and we can recover the PIN entered by the
user in real-time.

1 Root Cause: Interconnect Arbitration
In anMCU, there are several bus entities that need to be interconnected, such as the CPU,memory,
and peripherals. Usually, it is done through a central interconnect, also known as a bus matrix,
that accordingly to the address broadcasted by a BM, creates a communication channel between
the master and slave port. An interconnect is able to perform several concurrent non-blocking
full-bandwidth transfers between several BMs and bus slaves, as long as the target destination
is different among all transfers. However, when two data transfers target the same component,
by following a specific arbitration policy, the interconnect decides in which order the BMs will
access the target peripheral. There are two possible arbitration policies, i.e., priority-based or
round-robin. In priority-based arbitration, access to the slave is granted to the master with the
highest priority. In round-robin arbitration, slave access is fairly multiplexed in time between
competing masters. Our attack relies on one simple key observation: when two BMs want to
access the same target component, the access of one BM has to be delayed (both in priority-based
and round-robin policies). By observing the presence or absence of a delay in its own access to
the target slave (e.g., memory bank), a BM can determine whether or not another BM accessed
the slave during the same time slot.

Figure 1 illustrates a scenario with two BMs: a CPU and a DMA peripheral. The CPU is mul-
tiplexed in time between the spy and victim domains, while the DMA is exclusively assigned to
the spy domain. Both the CPU (BM 1) and DMA (BM 2) operate (i.e., read, write) over the same

1

Figure 1: Two bus masters, i.e., CPU and DMA, simultaneously accessing a shared memory bank.

memory bank, but in separated memory spaces. Although the memory spaces are fully isolated,
the bus interconnect linking BM 1 and BM 2 to the memory bank is shared. By observing the tem-
poral changes caused by the matrix arbitration in their memory transactions the BMs can extract
information about each other’s memory accesses. Without breaking physical security isolation
boundaries, a malicious BM can spy on bus activity and determine when a specific component
was accessed by another BM. As long as the bus slave is shared between BMs, memory protections
and security states cannot prevent this type of arbitration-related information leakage.

2 Threat Model and Assumptions
An attacker has the goal to subvert the system hardware isolation and bypass security barriers to
get sensitive information from an otherwise isolated domain. In a side-channel attack, this secret
is derived from unintended information leakage which is the result of the victim’s interaction
with the system.

We assume that:

1. The attacker ¹, during the attack build-up phase, has access to the victim’s code;

2. The attacker has full control over an isolated domain and its resources;

3. During the exploitation phase, the spy is able to invoke the victim code.

The attack exploits a microarchitectural timing channel on the bus interconnect. To exploit this
channel, there are a minimal set of assumptions:

1. A shared memory bank between the spy (the attacker’s code) and the victim;

2. A secret-dependent control flow in the victim code;

3. A set of peripherals and a bus master (BM) that can be controlled by the spy.

¹Throughout the paper, we will refer to the person who mounts the side-channel attack as the attacker, and the code
that the attacker develops to perform the attack as the spy.

2

The shared memory bank will create visible contention when the spy and victim try to access
it simultaneously. The secret-dependent control flow structures will create unbalanced memory
accesses and visible timing differences between execution paths. The bus master, i.e., the direct
memory access (DMA), will be used to generate contention and the peripherals (e.g., timers) will
be used to detect it.

3 Vulnerability Overview: a Toy Example
The spy can leverage this arbitration-related leakage to obtain the victim’s access pattern to the
shared memory. First, the spy triggers the DMA to do memory accesses 1 and then invokes
the victim 2 . Leveraging any external wall-clock, the spy can measure the BM transfer latency
to detect if the transaction lasts more than expected, hence if there was contention or not. As
depicted in Figure 1, when there is contention, DMA access (A2) takes t+ delay instead of t 3 .
Using this attack method, a spy can detect whether a specific memory was accessed at a given

time. The spy takes advantage of this information leak to detect secret-dependent differences in
the victim’s access to the monitored memory. A spy can observe those differences by leveraging
the MCUs load-store architecture which have two types of instructions: (i) instructions that in-
terface with memory, i.e., loads and stores; and (ii) ALU operations. A spy can detect when the
victim executes loads and stores and infer its execution pattern, as these are the only instructions
that access data memory. If the victim code has a secret-dependent control flow, i.e., loads or
stores are executed at different clock offsets between execution paths, it will produce different
memory access patterns; the spy may leverage it to infer and steal a particular secret.

Else

If
Trace

trace

t t+1 t+2 t+3 t+4 t+5 t+6

cmp beq movs str b b nop

cmp beq beq movs str nop

--- --- --- X --- --- ---

--- --- --- X ------ ---

A

B C

1 clk
1 clk
1 clk
2 clk
1 clk
1 clk

3 clk (else), 1 clk (if)
1 clk

if(s==1){var=1;}else{var=0;}

 cmp r3, #0
 beq.n ELSE
IF: movs r3, #1
 str r3, [r7, #0]
 b.n END
ELSE: movs r3, #0
 str r3, [r7, #0]
END: nop

Clock

Figure 2: Left, balanced If-else statement compiled for Arm Cortex-M33 (-O0). Right, memory
access pattern and monitoring of clock t+ 3.

Figure 2 depicts an example of how a spy can leverage the load-store architecture as well as bus
contention to spy on a victim and steal a secret. Although, both execution paths take the same
time to execute, i.e., 6 clocks, the accesses to memories are done in different clock cycles (t + 3
and t + 5). In this case, the difference in execution between the two paths is due to the branch
instruction. If the branch (beq instruction) is not taken, it takes only 1 clock cycle A , but if it
is taken, it takes 3 clock cycles B . This changes the relative position of the str instruction C
to the beq instruction and reveals the secret. When the secret is 1, the str occurs in clock cycle
t+ 3, otherwise, it occurs in clock cycle t+ 5. A spy monitoring either of these two clock cycles
can derive the secret by observing whether or not there is contention on the data memory bus.

3

4 Exploiting the Toy Vulnerability
In this section, we assume that the previous code is executing in a separated and isolated domain
and targets a single-core MCU. The spy can invoke the code to be executed, however, the code is
instantiated in another domain. The spy’s goal is to retrieve if the secret code is 1 (s==1).

4.1 Challenges
To carry out the attack, there are three main requirements that must be met.

(R1): The spy and the victim must share the very same memory bank;

(R2): The spy must be able to record the shared memory bank access pattern to obtain an execu-
tion trace;

(R3): The spy must be able to detect contention points on-the-fly.

These requirements need specific core building blocks, and their materialization imposes four
main challenges:

C1: Spy lacks access to past microarchitecture states. Unlike other microarchitectural compo-
nents (such as I-/D-caches and branch predictor caches), the bus does not retain any state over
time. The contention must be assessed and recorded on-the-fly, i.e., in real-time.

C2: Spy is unable to run concurrently with the victim. Low-end MCUs are typically powered
by a single CPU², thus concurrent execution of spy and victim code is not possible.

C3: Victim execution cannot be interrupted. We assume that the victim isolated domain imple-
ments mitigations against Nemesis attacks [6] and has the interrupts disabled.

C4: Spy only has one chance to steal the secret. The attack must be performed during a single
execution of the victim code, as we are targeting non-cryptographic applications where the secret
is processed in a single run.

4.2 Hardware Gadgets
To overcome the aforementioned challenges, we introduce the concept of hardware gadgets. These
gadgets are interconnected peripherals, such as timers and DMAs, that can execute specific tasks
in the background without requiring CPU’s intervention. Hardware gadgets allow for some level
of concurrent execution between the victim code running on the CPU and the spy logic, ad-
dressing C2. The hardware gadgets can execute specific tasks (such as periodic memory access)
without interrupting the victim’s code execution, addressing C3. The highly deterministic nature
of MCUs also enables these gadgets to be synchronized with the victim’s code at the clock cycle
level. This allows the spy to use these gadgets to monitor the victim’s activity (such as access to
a shared memory) and execute conditional actions based on the victim’s control-flow, addressing
C1 and C4 respectively.

To meet the requirements of the attack, i.e., creating (R1), recording (R2), and detecting con-
tention (R3), we devise two basic hardware gadgets (more advanced gadgets can be seen in Section
6): the record contention gadget and the detect contention gadget. The record contention gadget
is used to obtain the victim’s memory access pattern, while the detect contention gadget is used to
detect on-the-fly accesses to the shared memory bank. Both gadgets are activated by an external

²While dual-core configurations can be found in modern microcontrollers, like STM32H7, MUSCA-B1, and i.MX
RT1170, single-core MCUs still make up the majority of the market share.

4

trigger, which can be sent by software or other hardware gadgets. Both gadgets require arbitrary
control over a BM, e.g., DMA, and access to a peripheral timer operating at the CPU frequency.

4.3 Attack Phases
Inspired by former template attacks [2, 3, 5], our attack is composed of two phases: (i) a profiling
phase; and (ii) an exploitation phase. In the profiling phase, the victim runs in an spy-controlled
environment, where several side-channels traces are recorded. After collecting the traces, the
template is generated, i.e., side-channel patterns that unequivocally identify secret-dependent
control-flow. In the exploitation phase, the spy correlates the incoming side-channel data with
the patterns on the template to identify a victim execution path, associated with a secret.

(a) Profiling phase. (b) Exploitation phase.

Figure 3: Example of the attack phases using the toy example from Figure 2.

In the profiling phase, depicted in Figure 3a, the attacker constructs a template matrix, which
has one trace per victim execution path. In the example represented in Figure 3a, the template
matrix has two traces A . One for the If path other for the else path. These traces are obtained
using the record contention gadget B . The spy triggers a DMA to execute 1 (i.e., read a timer)
and invokes the victim code 2 . This is repeated several times until the spy has generated con-
tention in all clocks cycles. For the toy example, the code accesses the SRAM 3 in clock cycle
t+ 3 when the if path is executed, and in clock cycle t+ 5 when the else path is executed.

In the exploitation phase, depicted in Figure 3b, the spy monitors a specific clock cycle and
compares it with the template matrix obtained in the profiling phase. From the profiling phase,
we know that contention in clock cycle t+3means if path was executed and contention in clock
cycle t + 5 means else path was executed. As illustrated in Figure 3b, to get the secret the spy
uses the detect contention gadget D to monitor one of those clocks C , e.g, t + 3. When there
is contention in t + 3 x it means the Secret = 1, and when there is no contention in t + 3, it
means Secret ̸= 1.

5 Attacking a ”Smart Lock” Application
To demonstrate the effectiveness of the attack in a more realistic setup, we used a smart lock
application³ as our use case, which is in line with state-of-the-art side-channel attacks for MCUs
[6]. The smart lock deals with security-critical information (the user’s pin) and interfaces with an
external secure keypad to detect key presses in real-time. This application serves as a good exam-
ple of typical low-end applications that operate in real-time, reading, processing, and actuating
over asynchronous events.

³https://github.com/sancus-tee/vulcan/blob/master/demo/ecu-tcs/sm_tcs_kypd.c

5

Attacker’s Goal

The attacker’s goal is to steal the Smart Lock pin entered by the user.

5.1 Smart Lock Application / Setup in a nutshell

Figure 4: Smart lock application setup.

In TrustZone-based systems, there are two domains: a secure and a non-secure one. As shown
in Figure 4, the main application runs in the non-secure domain, while the smart lock trusted ap-
plication (TA), which processes security-sensitive information, is deployed in the secure domain
and interfaces with an external keypad for user input. The smart lock application is triggered by
the main application in the non-secure domain, e.g., to authenticate a user, and reads the keypad
until all four digits of the pin have been pressed. The smart lock then returns a status mes-
sage indicating whether the entered pin was valid or not. The code snippet of the Smart Locks
read_keypad function, is presented in Listing 1.

1 s i gned i n t read_keypad (vo id) {
2 i n t i s _ p r e s s e d , mask = 0 x1 ;
3 i n t new_key_s ta te = g e t _ k eyp ad_ s t a t e () ;
4 f o r (i n t key = 0 ; key < 1 6 ; key ++) {
5 / / d e t e c t r i s i n g edge
6 i s _ p r e s s e d = (new_key_s ta te & mask) & ~ (k e y _ s t a t e & mask) ;
7 i f (i s _ p r e s s e d)
8 pin [p i n_ i dx ++] = key ;
9 e l s e
10 dummy_pin [dummy_pin_idx ++] = key ;
11 dummy_pin_idx = 0 ; / / avo id b u f f e r ove r f l ow
12 mask <<= 1 ;
13 }
14 k e y _ s t a t e = new_key_s ta te ;
15 r e t u r n (4 − p in_ i dx) ;
16 }
17

18 vo id r e ad_p in () {
19 s i gned i n t p i n _ l en = 4 ;
20 whi l e (p in_ l en >0)
21 p i n_ l en = read_keypad () ;
22 }

Listing 1: Read_Keypad code based on Nemesis [6] attack use case, which follows a reference
implementation of a keypad interface from Texas Instruments [4].

6

The goal of the spy is to uncover the pressed key. To do this, the spy monitors the victim’s
control flow and checks whether or not the victim executes the secret-dependent path. The
read_keypad code continually iterates over all 16 keys in a loop, verifying if the key was pressed
and registering it when there is a match. Apparently, this is not vulnerable to typical timing
attacks, since the code is carefully balanced for a constant time. However, a closer examination
of the if statement in assembly (similar to Figure 2) reveals that the code accesses memories
in different points in times (different execution paths), revealing the secret-dependent path and
thereby the secret (i.e., the pressed key).

With the identification of the vulnerable code, i.e., the if statement, the spy only needs to be
set to monitor a specific clock cycle (similar to t + 3 clock cycle in Figure 2) in each for loop
iteration. If the spy is able to do that, it will be possible to indirectly understand which key was
pressed. For example, if the spy observes that the if branch was executed in the 7th iteration of
the for loop, it instantly realizes that the user pressed key 7.
The task of the spy is straightforward: 1) keep track of the for loop and record the number of it-

erations it has executed; 2) continuouslymonitor a specific clock cycle for any signs of contention.
When a key is pressed, the spy will observe the resulting contention. To determine which key
was pressed, the spy can then look at its internal counter that is keeping track of the for loop.

5.2 Smart Gadget Network
To track the code execution and get the victim control flow we need to use a combination of
hardware gadgets, what we call a smart gadget network (SGN). SGN is a combination of hardware
gadgets interconnected to perform a specific algorithm/logic. To implement the attack, we need
two SGN, i.e., one for the profiling phase and other for the exploitation phase.

The profiling SGN is used to trace the victim execution. It needs two hardware gadgets. One
gadget to generate and record contention, i.e., the record contention gadget, and another to instruct
the record contention gadget to execute and create contention in a specific clock cycle, trigger
contention gadget.

The exploitation SGN is used to track the smart lock code execution and steal the secret. This
SGN automatically generates and detects contention on the secret-dependent if branch and keeps
track of the for loop iteration number. To be able to do that, the exploitation SGNneeds 5 hardware
gadgets:

(G1): The detection gadget, to generate and automatically detect contention;

(G2): The trigger contention gadget (same as the profiling SGN), to trigger the detection gadget,
and generate contention in arbitrary clock cycles;

(G3): The counter gadget, to track the iteration index of the read_keypad for loop;

(G4): The read secret gadget, to automatically read the counter gadget when there is contention
(i.e., the secret);

(G5): The auto-sync gadget, to keep the exploitation SGN in synchronization at the clock cycle
with the victim code.

5.3 Attack Overview
To better understand the read_keypad, we split the code into 5 parts, as shown in Figure 5. There
are two potential execution paths, depending on whether a key is pressed or not. Both paths
include three common parts: (i) the while loop, (ii) the read_key function, and (iii) the for loop.

7

Figure 5: Key parts of the read_keypad function highlighted.

The key difference between the two paths is the secret-dependent if statement, which causes a
variation in thememory access patterns based on user input. When a key is pressed, the if branch
is executed; otherwise, the else branch is executed. In the profiling phase, the attacker uses the
profiling SGN to capture the memory access patterns. During the actual attack, the attacker uses
the exploitation SGN to retrieve the secret by using the memory access traces obtained in the
profiling phase.
5.3.1 Offline Profiling Phase
During the profiling phase, the spy has complete control over the victim code, which is exe-
cuted within the spy’s domain, i.e., the non-secure world. To obtain the victim’s execution profile
(please refer to traces A and B from Figure 6), the spy creates contention in every clock cycle
of the victim code. This is done by executing the victim multiple times and in each execution,
incrementing the clock cycle where the contention is created. To profile each execution path, the
spy forces the victim to only execute one path per run by sending a constant input. This can be
done either by pressing the same key repeatedly (to trace path A) or by not pressing any key at
all (to trace path B).
The profiling is carried out in three steps:

1. First, the spy code executes in a while loop, incrementing a clock variable for each victim
execution until the final clock cycle is reached. During each iteration, the code triggers the
Profiling SGN to generate contention at a specific clock cycle a .

2. Then the spy invokes the victim b ;

8

while clock != END do

 Start_Trace(clock++);

 vcitim();
 End_Trace();

end

Firmware

Trigger Cont.

Gadget

SPY

VIC

SRAM

16 ... 2 1Record Cont.

Gadget

17

1 42 3 5 86 7 9 1210 11 13 1614 15 17

If pin[x++] = i
While Read_Key For

Else dummy[x++] = i
b

c
a

A

B

A

B

1 2 3 4 5 6 7 9 10 11 12 13 14 15 168 17

1 2 3 4 5 6 7 9 10 11 12 13 14 15 168 17

If (Key Pressed)

Else (Key !Pressed)

Figure 6: Profiling SGN.

3. Finally, the trigger gadget c , after a predetermined amount of time has passed, initiates
the record gadget to create and record contention.

Step 3 generates two execution patterns: one when a key is pressed and the if path is executed
A , and another when there is no keypress and the else path is executed B . The profiling is
repeated for each possible execution path of the read_keypad code, of which there are 17 in total,
one for each possible key (16 possibilities) plus one additional execution path for when there is
no key press.
5.3.2 Online Exploitation Phase
In the exploitation phase, the spy monitors a set of clock cycles to determine the executed path
and infer the secret. Spy and the victim run in separate domains, with the spy operating in the
non-secure world and the victim in the secure world. To initiate the victim’s execution, the spy’s
exploitation code sends a request to the firmware, which then performs a domain switch 2 and
runs the victim code. This results in an offset in the clock cycles of the profiling phase patterns. To
account for this firmware overhead, the spy traces the secure world, including both the firmware
and the victim, and searches for the patterns obtained in the profiling phase. This allows the
spy to determine the amount of time elapsed from the moment the spy invokes the victim until
the first victim instruction is executed. This spy uses this offset to correct the patterns from the
profiling phase. For the sake of example, let us consider that the first instruction of the victim
code is executed at clock cycle 1000 and that the spy selects clock cycle 14 from the traced patterns
A and B . As a result, clock cycle 14 will be shifted to 1014 and the spy will monitor clock 1014
instead of 14.

9

Trigger Cont.

Gadget

SPY

VIC

SRAM

C

begin

 Start_Exploit(clock);

 vcitim();
 End_Exploit();

end

1 42 3 5 86 7 9 1210 11 13 1614 15 17

If pin[x++] = i
While Read_Key For

Else dummy[x++] = i

Counter

Firmware

0 1 2 3 4 5 6 8 9 10 11 12 13 14 157

14

Read Secret

Gadget

Auto-Sync

Gadget

Detect Cont.

Gadget

Counter

Gadget

x16
x16

ReadSync

1

2
2

3

3

4

4
6

57

A

B

Figure 7: Exploitation SGN.

After the target clock cycle to monitor is selected, the spy launches the attack:

1. The spy triggers 1 the exploitation SGN to generate contention in the selected clock cycle;

2. The spy invokes the victim through a firmware call 2 ;

3. The trigger gadget creates 16 triggers 3 , one for each iteration of the read_keypad for loop.
This causes the detect contention gadget to generate contention at the first clock cycle, and
in multiples of that. For example, if the for loop takes 50 cycles to execute, then contention
will be generated in clock cycles 1014 (for key=0), 1014 + 50 (for key=1), 1014 + 100 (for
key=2), and so on;

4. Each trigger generated 3 is fed into the counter gadget, which will keep track of the num-
ber of triggers, from 0 to 15 C . Upon reaching the count of 15, the counter gadget signals
the completion of the for loop 6 ;

5. When contention is detected, a signal 4 is sent to both the read secret gadget and the auto-
sync gadget. The read secret gadget then accesses the value of the counter gadget C to
reveal the key (secret). For example, if the counter gadget holds a value of 7 and contention
is detected, it indicates that the key corresponding to the 7th iteration of the for loop was
pressed.

6. The auto-sync gadget is activated by either the completion of the for loop 6 or by the
detection of contention 4 . Upon activation, it adjusts 7 timing for the next clock cycle in

10

Figure 8: TF-M attack setup.

which contention will occur, thereby re-synchronize the exploitation SGN with the victim
code.

6 Attack Demonstration
We mounted the attack against a TEE kernel leveraging the TrustZone-M (Armv8-M), i.e., TF-M
[1] . The spy runs in the non-secure world while the victim, i.e., the smart lock, is a TA running
on top of a trusted kernel in the secure world, as shown in Figure 8.

We successfully exploit the smart lock TA (bypassing TrustZone-M) on a NUCLEO-L552ZE-Q
platform by leveraging the profiling and exploitation SGNs. This platform features an STM32L552
MCU powered by an Arm Cortex-M33, implementing the Harvard architecture, i.e., instruction
and data fetch occur on separate buses. The bus interconnect uses a round-robin arbitration
policy. NUCLEO-L552ZE-Q has a total of 72 peripherals, including 14 timers, 2 DMAs with 8
channels each, and a 16-channel DMAMultiplexer, which enables direct communication between
peripherals and the DMA channels. The profiling and exploitation SGNs require 4 out of the 14
timers, 5 out of the 16 DMA channels, and 5 out of the 16 DMA Multiplexer channels. In total,
only 6 (i.e., 4 timers, 1 DMA, and 1 DMA Multiplexer) out of the 72 available peripherals were
used in this exploit, which represents 8.3% of the available peripherals.

7 Generalization to other MCUs
In this white paper, we demonstrate the viability and practicality of the attack in the STM32L552
MCU. Notwithstanding, given the widespread availability of the leveraged microarchitectural
source, i.e., the bus interconnect, in Armv6-M, Armv7-M, and Armv8-M (and even other ISAs)
MCUs, we strongly believe that it is possible to mount similar variants of the attack in a large
number of platforms, including Armv7-MMCUs without TrustZone but with memory protection
unit (MPU).

To have a feeling about the real extent of the vulnerability, we mounted a simple covert channel
(to transmit 8 bits of information) on three additional ST MCUs: the STM32L0 (Cortex-M0+), the
STM32L4 (Cortex-M4), and the STM32F7 (Cortex-M7). As shown in Figure 9, all of the evaluated
boards exhibit a clear, 45-degree, noise-free channel, indicating that they may be vulnerable to
the same microarchitectural timing side-channel attack.

11

Figure 9: Raw MCUs’ channel matrix, measured in a baremetal setting.

8 Security Incident Process
8.1 Timeline

• The microarchitectural channel was preliminary observed on the STM32L552 in February
2022.

• The microarchitectural channel was fully validated on the STM32L552 in April 2022.
• We successfully mounted the Toy example attack on the STM32L552 in June 2022.
• We successfully mounted the Smart Lock use case (with TF-M [1]) attack in October 2022.
• Themicroarchitectural channelwas fully validated on three additional STMCUs (STM32L073,
STM32L412, STM32F767) in November 2022.

• We completed the White Paper and initiated responsible disclosure of the vulnerability in
January 2023.

• We submitted an academic paper with an in-depth description of the attack to the IEEE
Security & Privacy Oakland (IEEE S&P) in April 2023.

• We disclosed the attack at Black Hat Asia on May 12th, 2023⁴.

⁴https://www.blackhat.com/asia-23/briefings/schedule/hand-me-your-secret-mcu-microarchitectural-timing-
attacks-on-microcontrollers-are-practical-30579

12

References
[1] Arm. Arm Trusted Firmware. www.trustedfirmware.org. Accessed: 2023-02-09.
[2] Billy Bob Brumley and Risto M. Hakala. “Cache-Timing Template Attacks.” In: Advances in

Cryptology – ASIACRYPT 2009. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 667–
684. isbn: 978-3-642-10366-7.

[3] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. “Cache Template Attacks: Automat-
ing Attacks on Inclusive Last-Level Caches.” In: 24th USENIX Security Symposium (USENIX
Security 15). Washington, D.C.: USENIX Association, 2015, pp. 897–912. isbn: 978-1-939133-
11-3.

[4] Texas Instruments. ImplementingAnUltra-Low-Power Keypad InterfaceWithMSP430™MCUs.
Tech. rep. Texas Instruments, Fev 2002/18.

[5] Michael Schwarz, Florian Lackner, and Daniel Gruss. “JavaScript Template Attacks: Auto-
matically Inferring Host Information for Targeted Exploits.” In: Proceedings 2019 Network
and Distributed System Security Symposium (2019).

[6] Jo Van Bulck, Frank Piessens, and Raoul Strackx. “Nemesis: Studying Microarchitectural
Timing Leaks in Rudimentary CPU Interrupt Logic.” In: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. CCS ’18. Toronto, Canada: Associa-
tion for Computing Machinery, 2018, pp. 178–195. isbn: 9781450356930.

13

www.trustedfirmware.org

	Root Cause: Interconnect Arbitration
	Threat Model and Assumptions
	Vulnerability Overview: a Toy Example
	Exploiting the Toy Vulnerability
	Challenges
	Hardware Gadgets
	Attack Phases

	Attacking a "Smart Lock" Application
	Smart Lock Application / Setup in a nutshell
	Smart Gadget Network
	Attack Overview
	Offline Profiling Phase
	Online Exploitation Phase

	Attack Demonstration
	Generalization to other MCUs
	Security Incident Process
	Timeline

